Search results

Search for "PLGA nanoparticles" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • particle [25][26]. PLGA is one of the finest materials for transporting chemotherapy drugs. PLGA transports not only hydrophobic but also hydrophilic drugs. The encapsulation of chemotherapeutics in PLGA nanoparticles has been extensively studied. PLGA has been loaded with doxorubicin, for instance, for
  • % using the nanoprecipitation method [29]. The loading of iron oxide nanoparticles The entrapment of iron oxide NPs into PLGA nanoparticles was estimated by measuring the absorbance at 562 nm through the Prussian blue reaction. The entrapment of IO was approx. 1.11% of the total weight of nanoparticles
  • (Table 2). The loading of IR780 into nanoparticles The IR780 loading capacity of the nanoparticles was evaluated by measuring the absorbance at 780 nm. Approximately 0.9% of IR780 was composed of PLGA nanoparticles (Table 2). The release of chlorambucil from the nanoparticles The release of chlorambucil
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • nanoparticles due to its special features such as biocompatibility, biodegradability, low toxicity, and adjuvanticity [109][110]. Given these properties, Tiwari and co-workers produced curcumin-loaded Eudragit-PLGA-nanoparticles (curc-E-PLGA-NPs) and evaluated their leishmanicidal activity with miltefosine
PDF
Album
Review
Published 04 Jan 2024

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • diameter dE = 50 ± 12 nm (estimated by cryo-TEM), whereas the diameter of the derived PLGA nanoparticles (dP) was 25 ± 7 nm as estimated from TEM [24], which gives a dP/dE ratio of 0.5. Higher dP/dE ratios were found by dynamic light scattering, especially at low polymer concentrations (note that the
  • -co-glycolic acid) (PLGA) is a biodegradable polymer that decomposes by hydrolysis into non-toxic and easily metabolized monomers, namely lactic and glycolic acid. It is approved by FDA and EMA [23][48]. Biodegradable and biocompatible PLGA nanoparticles find uses as carriers for drugs, peptides
  • , proteins, vaccines, and nucleotides [2]. In spite of biodegradability and biocompatibility, some studies have also demonstrated a certain concentration-dependent toxicologic profile including a mild inflammatory response after treatment with PLGA nanoparticles [49]. Some authors have suggested that the
PDF
Album
Review
Published 13 Mar 2023

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • from GIT conditions and deliver the drug to the intestinal tumoral region by accumulating in mucus has been designed. For this purpose, DCX-PLGA nanoparticles (NPs) and CS/DCX-PLGA NPs were prepared, and their in vitro characteristics were elucidated. Nanoparticles around 250–300 nm were obtained. DCX
  • formulation approaches, positive results in clinical efficacy and safety can be achieved by designs making use of the opportunities offered by new drug delivery systems [32][39][40]. In this study, orally administered PLGA nanoparticles were designed to be used against bowel tumors, and docetaxel was loaded
  • into the nanoparticles as a model anticancer agent. CS coating was used to impart positive surface charge to negatively charged PLGA nanoparticles and to increase their interaction in the intestinal lumen. To date, an orally applicable and effective treatment approach to colon tumors has not been
PDF
Album
Full Research Paper
Published 23 Nov 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • ) (PLGA) nanoparticles loaded with AAT were successfully manufactured and AAT release profiles from the nanoparticles were investigated [21][22]. In our previous studies, we investigated and described in detail the process of nanogelation from Nα-ʟ-lysine-grafted α,β-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran
PDF
Album
Full Research Paper
Published 22 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • study, silk fibroin/poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels containing PLGA nanoparticles were used for the simultaneous delivery of bFGF and TGF-β1 to regenerate articular cartilage tissue [54]. The results showed that the simultaneous release of bFGF and TGFß1 improved the viability
PDF
Album
Review
Published 11 Apr 2022

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • were observed for PLGA nanoparticles stabilized with PS80 or P188. PLGA nanoparticles loaded with either loperamide or doxorubicin were coated with PS80 or P188 and tested in vivo in rodents [56]. In both cases, P188-coated PLGA nanoparticles showed a higher efficacy than PS80-coated nanoparticles, but
  • both formulations were able to cross the BBB and deliver their cargo. On the other hand, in another study, coumarin-6-loaded PLGA nanoparticles coated with either chitosan or PS80 showed a better crossing ability than P188-coated nanoparticles [57]. This result seems to be in accordance with the
  • ]. PLGA-PEG-PLGA nanoparticles loaded with loperamide and coated with either PS80 or P188 were compared [60]. Both formulations could cross the BBB but P188 seemed to permeate to a higher degree than PS80. In conclusion, PS80 is nowadays the gold standard for increasing the BBB crossing of polymeric
PDF
Album
Review
Published 04 Jun 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration

  • Nashrawan Lababidi,
  • Valentin Sigal,
  • Aljoscha Koenneke,
  • Konrad Schwarzkopf,
  • Andreas Manz and
  • Marc Schneider

Beilstein J. Nanotechnol. 2019, 10, 2280–2293, doi:10.3762/bjnano.10.220

Graphical Abstract
  • mucus. Drug carrier systems such as nanoparticles (NPs) require proper surface chemistry and small size to ensure their permeability through the hydrogel-like systems. We have employed a microfluidic system to fabricate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with a muco-penetrating
  • applications. Keywords: curcumin; human pulmonary mucus; microfluidics; muco-penetrating nanoparticles; nanomedicine; permeability; PLGA nanoparticles; Introduction In the last decades, the application of nanotechnology in medicine has gained significant attention, especially in the biomedical field for
  • . Synthesis of PLGA nanoparticles in a microfluidics system A microfluidic system was assembled using a cross-channel microreactor design, connected via glass capillaries (180 µm ID and 300 OD, Labsmith, Livermore, USA). Monodispersed PLGA NPs coated with Pluronic F68 on the surface were synthesized as
PDF
Album
Full Research Paper
Published 19 Nov 2019

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

  • Sebastian Pieper,
  • Hannah Onafuye,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Martin Michaelis and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 2062–2072, doi:10.3762/bjnano.10.201

Graphical Abstract
  • preparation by solvent displacement led to the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH 7 reaching 53 µg doxorubicin/mg nanoparticle. These PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst
  • -like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH 7 (presumably due to their high drug load and superior drug release kinetics) exerted the
  • their anticancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anticancer efficacy. The design of drug-loaded nanoparticles with optimised anticancer activity at the cellular level is
PDF
Album
Full Research Paper
Published 29 Oct 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • against specific cell populations. As example, Herceptin is an antibody that recognizes the human epidermal growth factor receptor 2 (HER2) overexpressed in breast cancer cells (HER2+). This antibody has been attached on the surface of poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with the
PDF
Album
Review
Published 14 Jan 2019

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • Nanoparticles (NP) of poly(lactic-co-glycolic acid) (PLGA) represent a promising biodegradable drug delivery system. We suggest here a two-step release system of PLGA nanoparticles with a pH-tunable polymeric shell, providing an initial pH-triggered step, releasing a membrane-toxic cationic compound. PLGA
  • the nanoparticles with high concentrations of sodium chloride shows no further release and thus demonstrates the pH-driven release to be quantitative. Keywords: layer-by-layer self-assembly; pH-triggered release; PLGA nanoparticles; polyelectrolyte multilayers; weak polyelectrolyte; Introduction The
  • idea is that this mechanism might in the future trigger a disruption of endosomal membranes and therefore enhance the intracellular distribution of the nanoparticles and the drug that is incorporated in the particle core. In the present work, we employ biodegradable PLGA nanoparticles, which are
PDF
Album
Full Research Paper
Published 30 Dec 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • acid) (PLGA) nanoparticles were studied as drug delivery vehicles for calcitriol, the active form of vitamin D3. In vitro effects of calcitriol encapsulated in PLGA nanoparticles were evaluated with respect to free calcitriol on human pancreatic cell lines, S2-013 and hTERT-HPNE, and the lung cancer
  • to the free calcitriol results. At this concentration the inhibitory effect on nontumor cells (hTERT-HPNE) decreased to 65%. This study highlights the ability of PLGA nanoparticles to deliver vitamin D3 into cancer cells, with major effects regarding cancer cell cycle arrest and major changes in the
  • not significantly different between cholecalciferol and calcitriol-loaded NPs (p > 0.05). The prepared systems exhibited a narrow size distribution (PDI ≤ 0.1). TEM analysis revealed spherical- and uniform-shaped PLGA nanoparticles, as shown in Figure 1. The diameter of the nanoparticles revealed by
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • that no silver agglomerates were found in the cell nucleus of hMSC. In addition to the particle size, the intracellular fate of nanoparticles within the cells is time- and dose-dependent [92]. As was shown by Cartiera et al. PLGA-nanoparticles were mainly found within early endosomes after 2 h of
  • when the medium was depleted of serum (data not shown), indicating that at least the discharge of particles or ions from vesicles or other pathways at the cell surface membrane requires carrier molecules outside the cells. Interestingly, Panyam et al. have previously shown that the exocytosis of PLGA
  • -nanoparticles in vascular smooth muscle cells was induced by the addition of BSA [94]. The understanding of the dissemination of silver nanoparticles must be related either to exoxytosis and/or to dissolution. It is complicated by the coexistence of silver in nanoparticulate and in ionic form, which will likely
PDF
Album
Review
Published 03 Nov 2014

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • bovine serum albumin (BSA), which is a main component of FCS that is added to the cell medium. The results showed that BSA significantly increased the exocytosis of the tested PLGA nanoparticles [28]. Given that we used FCS in the cell medium, the high exocytosis might be responsible for the significant
PDF
Album
Full Research Paper
Published 29 Oct 2014
Other Beilstein-Institut Open Science Activities